The Contribution of Active Galactic Nuclei to the Excess Cosmic Radio Background at 1.4 GHz

David R. Ballantyne Center for Relativistic Astrophysics, School of Physics, Georgia Tech

The Cosmic Backgrounds

Hauser & Dwek (2001)

- XRB was the first cosmic background detected
- Discovered (along with Sco X-1) during a rocket flight that intended to detect the moon (Giacconi et al. 1962)
- Above 1-3 keV the XRB is isotropic to within a few per cent on large scales
- Strongly suggests an extragalactic origin

The Background Spectrum

- spectrum peaks at 30-40 keV
- between ~1 and 20 keV the spectrum is well fit with a powerlaw with photon index, Γ = 1.4 (photon-flux ∞ E^{-Γ})
- no obvious spectral features -> no z info

Gruber et al. (1999)

Discrete Models of the XRB

- the most common hard extragalactic X-ray sources are AGN
- they have power-law spectra above 2 keV
- but the average observed photon-index of AGN is 「~1.7

- Setti & Woltjer (1989) proposed that the XRB was comprised of the sum total of emission from mostly obscured AGN over a range of luminosity, redshift and absorbing column
- they were inspired by the AGN unification model

7 Ms Chandra Deep-Field South (Luo et al. 2017)

Connection to Star-Formation History?

Madau & Dickinson (2014)

Connection to Star-Formation History?

Red, green and blue lines/areas are estimates of the black hole accretion rate density scaled up by 3,300.

Madau & Dickinson (2014)

Hypothesis:

There exists an increase in obscured AGN to z~1-2 that is directly related to the increase in the cosmic SF rate.

- That is, the obscuration around the AGN is regulated by the host galaxy SF rate -> it must evolve with z
- If this is correct, then studying how the environment around an AGN evolves and changes with luminosity and redshift will give important information on the galaxy assembly process.

Prediction: An AGN Type 2/Type 1 ratio that evolves with z

Now good evidence for this:

Ballantyne et al. (2006) found that a Type 2 fract. ∞ (1+z)^{0.3} can fit the XRB and X-ray number counts.

Confirmed by Treister & Urry (2006) [0.4], Hasinger (2008) [0.6], and Ueda et al. (2014) [0.48].

Merloni et al. (2013)

Zooming Into the Nucleus

PAH emission + 24 μm in local Seyferts Diamond-Stanic & Rieke (2012)

...and even closer...

Esquej et al. (2013)

Toward a Physical Model

- Need to explore the physics of a starburst disk around a black hole.
 - What properties (star-formation rate, fueling rate, metallicity) are required in order for a disk to obscure an AGN?
 - How might this change with the host galaxy's evolution?
 - How does the AGN luminosity affect the disk structure?
- Begin with a 1D analytical model (Thompson et al. 2005).

- Toomre's Q=1
- Eddington limited
- Global torque assumed to operate on disk
- Competition between starformation and accretion

Ballantyne (2008)

- 1260 starburst models
- Parameters:
 - M_{BH}
 - R_{out}

- f_{gas}(R_{out})
- Strength of angular momentum transport in disk
- dust-to-gas ratio
- ~40% produce a pcscale starburst

Ballantyne (2008)

- Nearly 55% of pc-scale starbursts have max. SFRs < 20 M_x yr⁻¹
- ~5% have SFRs
 > 300 M_g yr⁻¹
- 10-30 M_g yr⁻¹ most common
- When gas extinguished, left with a nuclear star cluster?

Ballantyne (2008)

- Estimate of radio flux at z=0.8 (using radio-far-IR correlation)
- Most common flux: ~10-30 μJy
- Red region SFR>100 M_¤ yr⁻¹
- Blue region SFR<30 M_a yr⁻¹
- Dashed histogram: estimated radioquiet AGN flux

SFR from COSMOS AGN

- z < 1 X-ray selected AGNs
- Radio stacks of undetected AGNs
- Corrected for AGN nuclear emission
 - Residual flux interpreted as SF

Pierce et al. (2011)

Same Results in 2D

- Calculate the hydrostatic balance at every radius for a midplane SFR given by the 1D model.
- As before, obtain expanded atmospheres at pc scales
- Therefore, pc-scale starbursts are a viable method to obscure AGNs at z~1.

Gohil & Ballantyne (2017)

Evidence of SF in AGN Host Galaxies from 1.4 GHz Number Counts

- Ballantyne (2009) computed the expected 1.4 GHz AGN radio counts from a X-ray Background model
- Depending on the details of the core X-ray -> radio luminosity conversion, SF in the host galaxy was needed to fit the observed number counts

Draper et al. (2011) used these calculations to investigate the contribution of AGNs and their host SF to the CRB at 1.4 GHz

	Table 2 Contributions of Various Sources to the 1.4 GHz CRB		
		Brightness Temperature (K)	Reference
	Total Measured CRB	0.48 ± 0.07	Fixsen et al. (2011)
	AGN	0.018	This work
	AGN+SF	0.025	This work
(1)	Max AGN+SF	0.042	This work

AGN+SF could at most explain 9% of the CRB, leaving about ~40% unexplained.

Updates to the calculation:

- Up-to-date X-ray background model, calibrated to fit the latest NuSTAR results (Harrison et al. 2016)
 - Ueda et al. (2014) HXLF, Burlon et al. (2011) N_H distribution, Ballantyne (2014) f₂-L_X relationship

Included recent radio counts to constrain model

- E-CDFS (Padovani et al. 2015), VLA-COSMOS 3 GHz (Smolčić et al. 2017)
- □ Use α =0.2 (S_v∞v^{- α}) for AGN core emission (Massardi et al. 2011)

Panessa et al. (2015) L_{1.4 GHz} -L_X relationship
 Murphy et al. (2011) SFR-L_{1.4 GHz} relationship

Contribution to 1.4 GHz T_B – AGNs (no SF)

 $\frac{dT_B}{d\log S} = \left(\frac{\ln(10)c^2}{2k_B\nu^2}\right)$ $S^2 dN$ dSThe RL counts from ECDF-S are used to set the L_x-dependent radio-loud fraction Total brightness temperature of AGNs: 0.016 K

- No physics here just a simple paramaterization
- But, shape is inspired by observations of jetted AGNs being more common at low accretion rates (roughly lower luminosities)

1.4 GHz $T_B - AGNs$ (const. SF)

2.7 M_{\odot} yr⁻¹ for both Type 1 and 2 AGNs

T_B=0.038 K

1.4 GHz T_B – AGNs (z and L dependent SF)

SF law follows the SFRD evolution from Madau & Dickinson (2014) except for a shallower rise with z: $(1+z)^{1.0}$ instead of $(1+z)^{2.7}$

Luminosity evolution goes as $(\log L_x-40)^{1.75}$

Stronger SF in Type 2s than Type 1s

T_B=0.025 K

Conclusions

- The AGN radio counts at the µJy level will be dominated by SF in obscured AGNs.
 - Tracking how this SF changes with z and L_x will determine if this is related to the obscuration and AGN fueling properties.
- After updates to the XRB model, and including the latest radio number counts and X-ray->radio conversions, the AGN contribution to the 1.4 GHz radio background remains at most 8%